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Our Current Approach to Al

Simple Environment: Big Data+Big Computing+Deep Learning=Al

ImageNet Challenge

IMAGENET

¢ 1,000 object classes |
(categories).
o |mages:
o 1.2 M train
o 100k test.

e Robustness

* Varying Environment




Research Theme 1: Big Data & System Machine Learning

BigData + Big Computing

Data Model Model
Processing Training Deployment
e Feature engineering e Model specification e Model compression
e Data augmentation e Nonconvex optimization ¢ On device learning

e Distributed optimization

Automated Machine Learning (autoML)
feature engineering, hyperparameter tuning, architecture search ...

Machine Learning Platform



Research Theme 2: Robust and Adaptive Algorithms

Small Data + Complex Environment

e Robustness

* Varying Environment

e Expansion to New Tasks

Adversarial Examples; Causality; Meta Learning; Continual Learning; Few-shots Learning




Some Statistical Optimization Related Recent Papers (and Techniques)

Big Data and System ML

Theory of Nonconvex Stochastic Optimization (variance reduction)
» Sharp Analysis for Nonconvex SGD Escaping from Saddle Points (COLT 2019)

* Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator (NIPS 2018)

Distributed Training (gradient compression)
e Gradient Sparsification for Communication-Efficient Distributed Optimization (NIPS 2018)

* Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization (ICML 18)
 DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression (ICML 19)

Robust and Adaptive Algorithms

Adversarial Attack (derivative free optimization)

» Efficient Decision-based Black-box Adversarial Attacks on Face Recognition (CVPR 2019)

* NATTACK: Improved Black-Box Adversarial Attack with Normal Distributions (ICML 2019)

* Hessian-Aware Zeroth-Order Optimization for Black-Box Adversarial Attack (arxiv)




Problem 1/3: Nonconvex Stochastic Optimization

Challenges: nonconvexity

Technique: variance reduction

Papers:
Sharp Analysis for Nonconvex SGD Escaping from Saddle Points (COLT 2019)

Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential
Estimator (NIPS 18)



Mathematical Formulation

Training machine learning models

min f(z) ()= 3 fil)

SGD algorithm:
fort=1, 2, ...
randomly pick i from 1 to n:

Tt < Tg—1 — Utvfi(%—l)

In practice it works well for nonconvex functions such as neural networks



Simple Theoretical Question

Question: How many SGD steps are needed to find an approximate statiopary point

IVf(z)l2 < e

Partial answer: not difficult to show (using standard proof techniques)

0(6_4) number of steps



More Complex Theoretical Questions

Q1
Does SGD escape saddle and
converge to an approximate local minimum?

Q2
How fast does it converge to local minimum?

Q3
Is there a better method?




Saddle Points and Approximate Local Minimum

Given € > 0, an e-approximate local minimum is a point x such that
IVi(z)]l2 <e
Vif(x) > —el

Claim: SGD can escape saddle points and converge to an approximate local minimum

Number of iterations for SGD: (Ge et al., 2015) pOly(d)G_S

—10
(Daneshmand et al., 2018) de

—4
(Jin et al, arxiv 2019) €

(Our result COLT 2019) =30



Improving SGD: earlier attempts

Our new result shows SGD can converge to approximate local minimum in e 30

steps.
Question: Can we do better?

Earlier attempts to improve the convergence of SGD: most are not better

NEON+SGD Xu et al., 2018) 4
NEON2+SGD Allen-Zhu & Li, 2018)
Stochastic Cubic Tripuraneni et al., 2018) a5

(
E
RSGD5 (Allen-Zhu, 2018a)
(
(
(

SGD Variants

Natasha22 Allen-Zhu, 2018b) a5
NEON24+SNVRG®  (Zhou et al., 2018a)
SPIDER-SFO™ Fang et al., 2018) e




Improving SGD: SPIDER

It can be shown best possible convergence result is: 6_3

Can be achieved by SPIDER algorithm, using variance reduction technique

Proved in our NIPS 2018 paper [Fang, Li, Lin, Zhang]
Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator



Stochastic Path Integrated Differential Estimator

Given stochasticpath L1,L2, ..., Lty ... estimate gradient Vf(xt)

SG (Stochastic Gradient):

gt = V fi(w¢) Vf(z)

SPIDER:

Agy =

Under Suitable Conditions, SPIDER is a better estimator than SG with smaller variance



The Benefit of SPIDER (Variance Reduction)

Variance of SGD: Ei ||fz(a:t) — Vf(wt)HQ — 0(1)

Variance of SPIDER: 0(77) with ¢ = 0(1/77)

EHZ (Ags — (Vf(zs) = Vf(zs-1)) |

7

Assume constant learning rate

-~

H'CES — T 1 H — 0(77) sum of martingale difference
|Ags]| = [V fi(zs) = Vfi(zs-1)ll = On) Z | (Age = (Vf(2s) = V(2am1)) |
IVf(zs) = Vf(zs—1)| = On) = O(n)

=E ) O(n*) =



The SPIDER Algorithm

Algorithm 2 SPIDER-SFO: Input 2%, §; = 202 /€2, ¢ = 202 /€* (online case, in high probability)
1: for k=0to K —1do

2. if mod (k,q) =0 then

3: Draw S; samples and let v* = V fg, (z¥)

4: else

5: Draw i ~ [n] uniformly at random, and let v* = Vf;(z*) — Vfi(z* 1) + v*1
6: end if

7. if [|v¥| < 2¢ then

8: return z*

9: else

10: "t = 2% — 5. (v*/||v*||) where 7 =¢€2/(2Lo).
11:  end if
12: end for

13: return z% ¢ however, this line is not reached with high probability




Optimality of SPIDER Algorithm

Upper Bound

SPIDER can obtain an ¢ approximate local minimum in

O(e?) steps

Lower Bound

There exists a problem such that no algorithm can obtain an € approximate
local minimum in fewer than




Answered a fundamental question on the complexity of nonconvex optimization
1. The complexity of SGD

2. The optimal complexity

Practical for some problems, but not for neural networks due to special structures

What’s next?
Work in progress: improved practical training algorithm for neural network training



Problem 2/3: Distributed Training

Challenges: Network Communication Bandwidth

New Technique: gradient compression + error compensation

Papers:
Gradient Sparsification for Communication-Efficient Distributed Optimization (NIPS18)

DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression
(ICML 19)

Error Compensated Quantized SGD and its Applications to Large-scale Distributed
Optimization (ICML 18)



Optimize Communication for Distributed Computing

Problem: training machine learning models

mm Z fi(x

Data are distributed over multiple nodes

Question: How to reduce the communication cost?

Answer:

Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization
(ICML 2018)

DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated
Compression (ICML 19)



Simple One-Step Communication

Node #1 Node #2

g9

-
@

95 Y
y/ACIEE
91

: @ Node #4 @ Node #3

Fully Connected

Error Compensated Quantized SGD
and its Applications to Large-scale
Distributed Optimization (ICML 18)

Other Communication Architectures

Complex Multi-Step Communication

Parameter Server w=w- HAW

0000000

o/ 1\
w00 00 [0
w00 (00 00

ZE B OB

Parameter Server Ring All Reduce

DoubleSqueeze: Parallel Stochastic Gradient Descent with
Double-pass Error-Compensated Compression (ICML 19)




Optimization Method: SGD

(t)
Compute minibatch gradient using local data on each node

g,gt) (t) vaj (t)

Communicate across network and compute aggregated gradient = Node# Node #2

t
g

(t)

(t) _ (t) 2®)
=yl s
\@ Node #4 \gmde #3

timestep t model parameter I

Communicate and update model parameter:

D) = 20 _ pg(®)



Existing Algorithm: QSGD

Compute local gradient on each node g(t)
~(t . t

Quantize g( ) = Qua,ntlze(g( ))

Broadcast to other nodes g(t)

Advantage: quantization reduces communication cost

Disadvantage: quantization error causes convergence slow down



How to Improve

|deal iterate: x(t) — x(O) _ 77[9(0) 4 g(l) N g(t_l)]
Latest gradient: g(t)

Transmitted gradient: g(t)

(t) _ (1)

One step error due to compression: untransmitted gradient g

Cummulative error: cumulative untransmitted gradient

RO — 0 (g0 _ 50

\ J/
-~

untransmitted gradient
Key Idea: error compensation

* Use cumulative untramsmitted gradients to compensate the current gradient
e Effectis similar to delayed gradients in asynchronous distributed optimization



Our Approach: Error Compensated Quantized SGD

Compute local gradient on each node g (t)

Quantize g(t) — Quantize(g(t) _I_ h(t))
~ (T

Broadcast to other nodes g( )

Update on each node h(t‘l—l) — h(t) € (g(t) L ~(t))
S —

error




Theory of Error Compensation

Claim 1:
QSGD has slower convergence rate than that of SGD

Claim 2:
Asymptotically EC-QSGD has the same convergence rate as that of SGD up to the leading
order, under appropriate conditions, and in particular:

|Quantize(u) — ul| < ~ylju|| with v < 1.

Conclusion:
EC-QSGD behaves significantly better than QSGD



Numerical Experiments
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New Technique for Distributed Optimization under Limited Network Bandwidth

What’s Next?
Other System-Aware Machine Learning Training and Deployment

* Decentralized On-Device Training
Cloud-Device Cooperative Training
Privacy-Aware Cooperative Training

Low-bit Training

Automated System Performance Optimization
* Automated Machine Learning

* On-Device Model Compression



Problem 3/3: Adversarial Attack

Challenges: Limited Number of Queries
New Technique: 2" order derivative free optimization

Papers:
Efficient Decision-based Black-box Adversarial Attacks on Face Recognition (CVPR 19)

NATTACK: Improved Black-Box Adversarial Attack with Normal Distributions (ICML 19)

Hessian-Aware Zeroth-Order Optimization for Black-Box Adversarial Attack (arxiv)



Problem: Deep models are not robust under adversarial attack

* How to construct efficient black-box Adversarial Attack procedure

Ostrich Tractor



Existing Solutions

e Mathematical Question:
e Given model 9(97 */E)

* Given example L
* Find a small perturbation ¢ : H5H < €

g(0,z) and g¢g(f,z+ ) have different labels

 White Box

* Need to know the model parameter {
* Technique: first order gradients of the model

* Black Box

* No need to know the model parameter@ : can evaluate function 9(33) — 9(9, 33)
* Technique: zeroth order approximation of first order gradients



Black Box Attack Mathematical Problem Statement

Given xy with label yg, want to find = = zy so that

min  f(x)

lz—zol|<e

where
f(x) = L(g(x),yo)

is a loss function measuring how different is the model output g(x) and label yq

Derivative free:  We can evaluate f(x) but not V f(z)



Black Box Attack using 15t order derivative free algorithm

Approximate derivative using function value

V(@) =Eynon b (fl@+pu) = f(@)u+ O

The following derivative free algorithm works as approximate SGD

Iterate t=0, 1, ...,
Draw U ~ N((),])

Ter1 = o — (f(2e + pu) — f(2))u




Our Method: Incorporate Hessian information into black box attack

Algorithm 1 Algorithm Z0-HessAware

1: Input: (9 is an initial point sufficient close to z*. And b is the batch size and p is an integer. Parameter

2:

3
4
5
6:
7
8

n is the step size.
fort=0,...,7 do
if t mod p == 0 then
Compute an approximate Hessian H; satisfies Eqn. (3.1).
end if

1/2 .~
Generate b samples with u; ~ N(0,I) and construct g,(z¢) = 7 ZZ . flatHy u)= 1) f=1/2,,

" /
Update @141 = z; — ng,(x1).

- end for

(3]

At the current time this leads to the most effective attack method



Theory (local convergence)

Assumption: Hessian approximation satisfies: (quality measured by 0 )

~

pH < V?f(z) < (2-p)H, €I<H

Convergence Result: If £ > 0 then we have local linear convergence:

Blf (o) — @) < (1= j50gy ) (o) = Flan) + 002

d : problem dimension

Convergence: depends on L independent of the condition number of V? f(z)

d




Derivative Free Hessian Approximation Methods

e Method 1: ZOHA-Gauss

b
~ Z i — pu) — 2 .
1=1

2112

* Method 2: ZOHA-Diag

. -
Dy =vDy 1 + (1 — ) (m-1)

~ D
Ht :dlag (1 _tyt)

b .
1 _ i) — 1) . o ~
Gu(ze-1) = Z fl@e—1 + pui) — f(ay 1)%', with @; ~ N(0, H; 11)
i=1




Attack CNN model on MNIST

Algorithm success rate % median queries average queries
Z00 (Chen et al., 2017) 42.13 15,200 17,091
PGD-NES (Ilyas et al., 2018) 44.19 7,300 10,496
targeted ZOHA-Gauss 50.03 3,712 6,649
ZOHA-Gauss-DC 56.14 2,941 6,246
ZOHA-Diag 52.13 6,400 9,128
ZOHA-Diag-DC 55.56 3,936 7,239
Z00 (Chen et al., 2017) 77.18 13,300 16,390
PGD-NES (Ilyas et al., 2018) 81.55 5,800 8,567
Z0OHA-Gauss 85.06 3,612 5,000
un-targeted | gy Gauss-pe 88.80 2,152 3,629
ZOHA-Diag 90.37 4,500 6,439
ZOHA-Diag-DC 91.90 2,460 4,352

16|e < 0.2



Attack Resnet 50 on Imagenet

Algorithm success rate % median queries average queries
Z00 (Chen et al., 2017) 100 39,100 45,822
PGD-NES (Ilyas et al., 2018) 99.37 11,270 17,435
targeted ZOHA-Gauss 99.62 8,748 12,257
ZOHA-Gauss-DC 100 8,588 11,770
ZOHA-Diag 100 7,400 9,123
ZOHA-Diag-DC 100 6,273 8,574
700 (Chen et al., 2017) 100 12,700 14,199
un-targeted PGD-NES (Ilyas et al., 2018) 100 1,500 2,283
ZOHA-Gauss 100 1,212 2,259
ZOHA-Gauss-DC 100 1,124 1,959
ZOHA-Diag 100 800 1,149
ZOHA-Diag-DC 100 561 945

16]| 00 < 0.05



"
9
o
£
S
X
LLl
®
o
©
E
O
O
X
O
S
=
<
&
£
e,
7p)

Kieaqy J93s1uueq 24n3NA am.:o._m _qat..:,.

=N

Ja3siuueq

a9)siuueq

J9)siuueq 1030e4)

ZOHA-Gauss-DC

v A A '
Keaqy J9)siuueq jueydald uedlyy 24Ny nA jeoqaaly pagni ysipuol| 1030€e03

ZOHA-Gauss

Kaeaqy J9)siuueq 1030e4)

Origin Image

ysypjob peaysawwey Aea d14329]9 Keu >33 Keabuns ] 3200 .:a: youiiso

S

T

S L T 6 8 € T
O
Q
3
5 e
g
I
[e]
N

L

3
5 o
g ]
I
[o]
N
v S L T 6 8 € T
[=]
@
=
G.w .f.
g
I
[o]
N L
o
=]
(]
§ b
|
I
[o]
N

S L T 6 8 € T

Origin Image

o
.
o
O
3
o
9



Statistics and Optimization are central to modern machine learning
 Many new problems require new techniques
e Exciting area with rapid research progress

What’s next?
e Big Data and System ML

Improved algorithm for neural network training
Cloud-device collaboration: federated learning
Automated machine learning

* Robust and Adaptive Algorithms
Attack = Defense = Understand/Prevent
Causal learning
Meta learning and small sample learning

* Generation Models
e Reinforcement Learning



Thank you



