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Our Current Approach to AI 
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Research Theme 1: Big Data & System Machine Learning 
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Research Theme 2: Robust and Adaptive Algorithms 
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Some Statistical Optimization Related Recent Papers  (and Techniques) 
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Problem 1/3: Nonconvex Stochastic Optimization  
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Mathematical Formulation 
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Simple Theoretical Question 

H-18'"*.I''''],P'#2)@'!T1'>-&$>'2+&')&&F&F'-,'H")F'2)'2$$+,:"#2-&'>-2-",)2+@'$,")-''x

krf(x)k2  ✏

J&5'"&0$&.8K15I''),-'F"HH"B5%-'-,'>L,P'M5>")0'>-2)F2+F'$+,,H'-&BL)"[5&>N'
'

O
�
✏
�4

�
)5#=&+',H'>-&$>'



More Complex Theoretical Questions 
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Saddle Points and Approximate Local Minimum 
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poly(d)✏�8

d✏�10

✏�4

✏�3.5

Given ✏ > 0, an ✏-approximate local minimum is a point x such that
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Improving SGD: earlier attempts 
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Algorithm SG Comp. Cost

SGD Variants

Neon+SGD (Xu et al., 2018)
✏
�4

Neon2+SGD (Allen-Zhu & Li, 2018)
Stochastic Cubic (Tripuraneni et al., 2018)

✏
�3.5

RSGD5 (Allen-Zhu, 2018a)
Natasha2� (Allen-Zhu, 2018b)

✏
�3.5

Neon2+SNVRG⇥ (Zhou et al., 2018a)
Spider-SFO+ (Fang et al., 2018) ✏

�3

Original SGD SGD
(Ge et al., 2015) poly(d)✏�8

(Daneshmand et al., 2018) d✏
�10

(this work) ✏
�3.5

Table 1: Comparable results on the stochastic gradient computational cost for nonconvex optimiza-
tion algorithms in finding an (✏,

p
⇢✏)-approximate second-order stationary point for problem (1.1)

under standard assumptions. Note that each stochastic gradient computational cost may hide a
poly-logarithmic factors of d, n, ✏.
Orange-boxed: Spider reported in orange-boxed is the only existing variant stochastic algorithm that achieves prov-

able faster rate by order than simple SGD.
�: Allen-Zhu (2018b) also obtains a stochastic gradient computational cost of Õ(✏�3.25) for finding a relaxed

(✏,O(✏0.25))-approximate second-order stationary point.
⇥: With additional third-order smoothness assumptions, SNVRG (Zhou et al., 2018a) achieves a stochastic gradient

costs of Õ(✏�3).

sharper variance reduced gradient methods and obtain a stochastic gradient computational costs

of O(n1/2
✏
�2

^ ✏
�3), which is state-of-the-art and near-optimal in the sense that they achieve the

algorithmic lower bound in the finite-sum setting.

Escaping Saddles in Single-Function Case Recently, many theoretical works care about

convergence to an approximate second-order stationary point or escaping from saddles for the case

of one single function (Carmon & Duchi, 2016; Jin et al., 2017; Carmon et al., 2018, 2017; Agarwal

et al., 2017; Jin et al., 2018b; Lee et al., 2017; Du et al., 2017). Among them, the work Jin et al.

(2017) proposed a ball-shaped-noise-perturbed variant of gradient descent which can e�ciently

escape saddle points and achieves a sharp stochastic gradient computational cost of ✏�2, which is

also achieved by Neon+GD (Xu et al., 2018; Allen-Zhu & Li, 2018). Another line of works apply

momentum acceleration techniques (Agarwal et al., 2017; Carmon et al., 2017; Jin et al., 2018b)

and achieve a rate of ✏�1.75 for a general optimization problem.

Escaping Saddles in Finite-Sum Case For the finite-sum setting, many works have applied

variance reduced gradient methods (Agarwal et al., 2017; Carmon et al., 2018; Fang et al., 2018;

Zhou et al., 2018a) and further reduce the stochastic gradient computational cost to Õ(n✏�1.5 +

n
3/4

✏
�1.75) (Agarwal et al., 2017; Allen-Zhu & Li, 2018). Reddi et al. (2018) proposed a simpler

algorithm that obtains a stochastic gradient cost of Õ
�
n✏

�1.5 + n
3/4

✏
�1.75 + n

2/3
✏
�2

�
. With recur-

sive gradient method applied (Fang et al., 2018; Zhou et al., 2018a), the stochastic gradient cost
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Improving SGD: SPIDER 
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Stochastic Path Integrated Differential Estimator 
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The Benefit of SPIDER  (Variance Reduction) 
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=
tX
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O(⌘)

k2

=E
tX

s=1

O(⌘2) = O(⌘).

kxs � xs�1k = O(⌘)

k�gsk = krfi(xs)�rfi(xs�1)k = O(⌘)

krf(xs)�rf(xs�1)k = O(⌘)



The SPIDER Algorithm  



SPIDER can obtain an ✏ approximate local minimum in

O(✏�3) steps

There exists a problem such that no algorithm can obtain an ✏ approximate
local minimum in fewer than

⌦(✏�3) steps
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Optimality of SPIDER Algorithm 



Summary 
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Problem 2/3: Distributed Training 
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Optimize Communication for Distributed Computing 



Other Communication Architectures 
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Opt-QSGD for Ef� cient Distributed Optimization

� cation techniques.

Gradient Quantization. In (Seide et al., 2014), 1Bit-SGD
is proposed to quantize each component in the gradient
to either 1 or -1 with zero-thresholding. An error feed-
back scheme is introduced during quantization, to compen-
sate the quantization error from the last iteration. Simi-
lar idea is adopted in (Strom, 2015), which accumulates
local gradients across iterations, and only transmits gra-
dient values exceeding a pre-selected threshold. Wen et
al. further extend this idea and compress gradients into
ternary values ( f −1 ; 0 ; 1 g ) with a stochastic quantization
function to ensure the unbiasness (Wen et al., 2017). Quan-
tized SGD (Alistarh et al., 2017) randomly quantizes gradi-
ents using uniformly distributed quantization points, and
detailed analysis is presented to address its convergence.
ZipML (Zhang et al., 2017) introduces an optimal quan-
tization strategy via dynamically choosing quantization
points based on the distribution. Zhou et al. propose the
DoReFa-Net to train convolutional networks with inputs,
weights, and gradients all quantized into � xed-point num-
bers (Zhou et al., 2016).

Gradient Sparsi� cation. The gradient dropping method
is proposed in (Aji & Hea� eld, 2017) to introduce spar-
sity into gradients to reduce the communication cost. In
(Wangni et al., 2017), gradient sparsi� cation is modelled
as a linear programming problem, aiming to minimize the
variance increase of quantized gradients. Lin et al. propose
the deep gradient compression algorithm, utilizing momen-
tum correction, gradient clipping, momentum factor mask-
ing, and warm-up training to achieve higher sparsity with-
out losing the accuracy (Lin et al., 2018).

Quantization in Deep Learning.

3. Preliminaries

We consider the following unconstrained optimization:

min
w

f (w) (1)

where w ∈ Rd and f : Rd → R is a convex and differen-
tiable function we wish to minimize. Often, the objective
function f is de� ned on a set of training samples D = f xi g ,
and the need for distributed optimization arises when the
training set is too large to � t into a single node.

Assume we are solving this distributed optimization prob-
lem in a data-parallel manner. The full set D is evenly dis-
tributed across P nodes, and the data subset located at the
p-th node is denoted as Dp. Formally, we wish to optimize:

min
w

P
∑

p=1

∑

xi∈Dp

f (w;xi) (2)

Figure 1 depicts how model parameters w are updated
via distributed SGD. Every node initializes its local model
replica using the same random seed, to ensure the consis-
tency of all model replicas. In the t-th iteration, each node
randomly generates a mini-batch of training samples, com-
putes the local gradient, and broadcasts it to all the other
nodes. When one node gathers all the local gradients sent
by other nodes, the global gradient can be computed and
used to update model parameters.

Figure 1. Distributed optimization under the data-parallel setting.

4. Optimized QSGD

For distributed optimization under the data-parallel setting,
local gradients needs to be exchanges between every two
nodes in each iteration. For large-scale distributed opti-
mization with tons of model parameters, e.g. training a con-
volutional neural network, gradient communication may
become the performance bottleneck.

One possible solution is to quantize the gradient before
transmission to reduce the communication cost. In this
section, we propose the Opt-QSGD (Optimized Quantized
SGD) algorithm, which uses quantized local gradients to
update model parameters. In each iteration, current local
gradient is compensated with accumulated quantization er-
ror from previous iterations, which can speed-up the con-
vergence behaviour.

Let Q : Rd → Cd be an unbiased stochastic quantization
function, which maps each component in a d-dimensional
vector into some element from the quantization codebook C.
The codebook usually only contains limited number of el-
ements, so the quantized vector can be ef� ciently encoded.
In each iteration, each node quantizes its local gradient be-
fore broadcasting:

~g(t)
p = Q(g(t)

p ) (3)

where g
(t)
p is the local gradient of the p-th node at the t-th

iteration, and ~g(t)
p is its quantized counterpart.
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Optimization Method:  SGD 
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Opt-QSGD for Ef� cient Distributed Optimization

� cation techniques.

Gradient Quantization. In (Seide et al., 2014), 1Bit-SGD
is proposed to quantize each component in the gradient
to either 1 or -1 with zero-thresholding. An error feed-
back scheme is introduced during quantization, to compen-
sate the quantization error from the last iteration. Simi-
lar idea is adopted in (Strom, 2015), which accumulates
local gradients across iterations, and only transmits gra-
dient values exceeding a pre-selected threshold. Wen et
al. further extend this idea and compress gradients into
ternary values ( f −1 ; 0 ; 1 g ) with a stochastic quantization
function to ensure the unbiasness (Wen et al., 2017). Quan-
tized SGD (Alistarh et al., 2017) randomly quantizes gradi-
ents using uniformly distributed quantization points, and
detailed analysis is presented to address its convergence.
ZipML (Zhang et al., 2017) introduces an optimal quan-
tization strategy via dynamically choosing quantization
points based on the distribution. Zhou et al. propose the
DoReFa-Net to train convolutional networks with inputs,
weights, and gradients all quantized into � xed-point num-
bers (Zhou et al., 2016).

Gradient Sparsi� cation. The gradient dropping method
is proposed in (Aji & Hea� eld, 2017) to introduce spar-
sity into gradients to reduce the communication cost. In
(Wangni et al., 2017), gradient sparsi� cation is modelled
as a linear programming problem, aiming to minimize the
variance increase of quantized gradients. Lin et al. propose
the deep gradient compression algorithm, utilizing momen-
tum correction, gradient clipping, momentum factor mask-
ing, and warm-up training to achieve higher sparsity with-
out losing the accuracy (Lin et al., 2018).

Quantization in Deep Learning.

3. Preliminaries

We consider the following unconstrained optimization:

min
w

f (w) (1)

where w ∈ Rd and f : Rd → R is a convex and differen-
tiable function we wish to minimize. Often, the objective
function f is de� ned on a set of training samples D = f xi g ,
and the need for distributed optimization arises when the
training set is too large to � t into a single node.

Assume we are solving this distributed optimization prob-
lem in a data-parallel manner. The full set D is evenly dis-
tributed across P nodes, and the data subset located at the
p-th node is denoted as Dp. Formally, we wish to optimize:

min
w

P
∑

p=1

∑

xi∈Dp

f (w;xi) (2)

Figure 1 depicts how model parameters w are updated
via distributed SGD. Every node initializes its local model
replica using the same random seed, to ensure the consis-
tency of all model replicas. In the t-th iteration, each node
randomly generates a mini-batch of training samples, com-
putes the local gradient, and broadcasts it to all the other
nodes. When one node gathers all the local gradients sent
by other nodes, the global gradient can be computed and
used to update model parameters.

Figure 1. Distributed optimization under the data-parallel setting.

4. Optimized QSGD

For distributed optimization under the data-parallel setting,
local gradients needs to be exchanges between every two
nodes in each iteration. For large-scale distributed opti-
mization with tons of model parameters, e.g. training a con-
volutional neural network, gradient communication may
become the performance bottleneck.

One possible solution is to quantize the gradient before
transmission to reduce the communication cost. In this
section, we propose the Opt-QSGD (Optimized Quantized
SGD) algorithm, which uses quantized local gradients to
update model parameters. In each iteration, current local
gradient is compensated with accumulated quantization er-
ror from previous iterations, which can speed-up the con-
vergence behaviour.

Let Q : Rd → Cd be an unbiased stochastic quantization
function, which maps each component in a d-dimensional
vector into some element from the quantization codebook C.
The codebook usually only contains limited number of el-
ements, so the quantized vector can be ef� ciently encoded.
In each iteration, each node quantizes its local gradient be-
fore broadcasting:

~g(t)
p = Q(g(t)

p ) (3)

where g
(t)
p is the local gradient of the p-th node at the t-th

iteration, and ~g(t)
p is its quantized counterpart.
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x(t)

g(t) =
1

m

mX

i=1

g(t)i (x(t))
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g(t)i (x(t)) =
1

b

bX

j=1

rfj(x
(t))

4,##5)"B2-&'2)F'5$F2-&'#,F&%'$2+2#&-&+.''

x(t+1) = x(t) � ⌘g(t)



Existing Algorithm: QSGD 
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How to Improve 

g̃(t)

g(t)

h(t+1) = h(t) + (g(t) � g̃(t))| {z }
untransmitted gradient

g(t) � g̃(t)
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Our Approach: Error Compensated Quantized SGD  
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g(t)

Z52)-"J&' g̃(t) = Quantize(g(t) + h(t))

h(t+1) = h(t) + (g(t) � g̃(t))| {z }
error



Theory of Error Compensation 
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Numerical Experiments 
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Summary 
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Problem 3/3: Adversarial Attack 
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Problem: Deep models are not robust under adversarial attack  
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Existing Solutions 
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x

✓

✓

� : k�k  ✏

g(✓, x)

g(✓, x) and g(✓, x+ �) have di↵erent labels

g(x) = g(✓, x)



Black Box Attack Mathematical Problem Statement 

Given x0 with label y0, want to find x ⇡ x0 so that

min
kx�x0k✏

f(x)

where
f(x) = L(g(x), y0)

is a loss function measuring how di↵erent is the model output g(x) and label y0

1&+"*2-"*&'H+&&.' We can evaluate f(x) but not rf(x)



Black Box Attack using 1st order derivative free algorithm 
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xt+1 = xt � (f(xt + µu)� f(xt))u

u ⇠ N(0, I)1+2P''
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rf(x) = Eu⇠N(0,I) µ
�1(f(x+ µu)� f(x))u+O(µ)



Our Method: Incorporate Hessian information into black box attack  

Algorithm 1 Algorithm ZO-HessAware

1: Input: x(0) is an initial point su�cient close to x⇤. And b is the batch size and p is an integer. Parameter
⌘ is the step size.

2: for t = 0, . . . , T do

3: if t mod p == 0 then

4: Compute an approximate Hessian H̃t satisfies Eqn. (3.1).
5: end if

6: Generate b samples with ui ⇠ N(0, Id) and construct g̃µ(xt) =
1
b

P
b

i=1
f(x+H̃

�1/2
t ui)�f(x)

µ
H̃�1/2

t
ui;

7: Update xt+1 = xt � ⌘g̃µ(xt).
8: end for

3.1 Properties of Estimated Gradient

Now, we list some important properties of gµ(x) defined in Eqn. (3.2) that will be used in our

analysis of convergence rate of ZO-HessAware in the following lemmas. These lemmas are also of

independent interest in zeroth-order algorithm.

Lemma 1. Let f(x) be L-smooth, then gµ(x) defined in Eqn. (3.2) satisfies that

kEu[gµ(x)]�rf(x)k2
K2  µ2

4
L2 kKk4 (d+ 3)3.

Lemma 2. Let f(x) be L-smooth, then kgµ(x)k2K2 can be bounded as

Eu kgµ(x)k2K2  µ2

2b
L2 kKk4 (d+ 6)3 +

2(d+ 2)

b
· krf(x)k2

K2 .

Now we give the bound of Eu

��K2gµ(x)
��3
K�2 in the following lemma.

Lemma 3. Let f(x) be L-smooth, then gµ(x) has such a property that

Eu

��K2gµ(x)
��3
K�2  1

b2

⇣
2µ3L3 kKk6 · (d+ 9)9/2 + 12(d+ 5)3/2 krf(x)k3

K2

⌘
.
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Theory (local convergence) 

⇢H̃  r2
f(x)  (2� ⇢)H̃, ⇠I  H̃
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E[f(xt+1)� f(x⇤)] 
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1� b⇢

16(d+ 2)

◆
(f(xt)� f(x⇤)) +O(µ2)

⇠ > 0
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⇢
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⇢

d
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Derivative Free Hessian Approximation Methods 
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4.1 Gaussian-Sampling Based Hessian Approximation

In this section, we propose a novel method to approximate the Hessian of f(x) with a much

lower query complexity. This method is based on Gaussian Sampling, and we name ZO-HessAware

implemented with such Hessian Approximation as ZOHA-Gauss.

Our new method is going to estimate the Hessian of fµ(x) defined in Eqn. (2.6). Since r2fµ(x)

is close to r2f(x) if µ is small, a good approximation of r2fµ(x) will approximate r2f(x) well.

In fact, we can bound the error between r2f(x) and r2fµ(x) as follows.

Lemma 4. Let fµ(x) be defined in Eqn. (2.6). The objective function f(x) satisfies Eqn. (2.4).

Then, we have ��r2fµ(x)�r2f(x)
��  �µ(d+ 1)1/2.

Using Gaussian sampling, we can approximate the Hessian of fµ(x) as follows:

H̃ = b�1
bX

i=1

f(x+ µui) + f(x� µui)� 2f(x)

2µ2
uiu

>
i + �Id, with ui ⇠ N(0, Id) (4.1) ?eq:H_gauss?

where � is a properly chosen regularizer to keep H̃ invertible. In the construction of H̃ of Eqn. (4.1),

we only take a small batch of points, that is b is small even much smaller the dimension d. Hence,

the construction of such H̃ has a low query complexity.

The approximate Hessian H̃ constructed as Eqn. (4.1) has the following property.

Lemma 5. Let H̃ be an approximate Hessian defined in Eqn. (4.1). Function fµ(x) is the smoothed

function defined in Eqn. (2.6). Then H̃ has the following property

r2fµ(x) � Eu[H̃] = r2fµ(x) +

✓
�� f(x)� fµ(x)

µ2

◆
· Id

Combining Lemma 4 and 5, we can obtain the result that if µ is small, and the batch size b in

Eqn. 4.1 is large, then H̃ constructed as Eqn. (4.1) can approximate r2f(x) very well. However,

we can not give the exact approximation precision of such H̃ measured by ⇢ in Eqn. (3.1) when

the bash size b is much smaller than d. Thus, we will not give the theoretical convergence rate and

query complexity of ZOHA-Gauss. Note that because ui is from Gaussian distribution, it does not

have the heavy tail e↵ect. Hence, we have such good property that H̃ construct as Eqn. (4.1) can

approximate r2f(x) with a small batch b.
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4.2 Diagonalization Based Hessian Approximation

We propose to use a diagonal matrix to approximate the Hessian. This method has been used

in the optimization of deep neural networks (Kingma & Ba, 2015; Zeiler, 2012; Tieleman & Hinton,

2012) and online learning (Duchi et al., 2011).

First, we compute an approximate Hessian in the manner of ADAM (Kingma & Ba, 2015) as

follows:

g̃µ(xt�1) =
1

b

bX

i=1

f(xt�1 + µũi)� f(xt�1)

µ
ũi, with ũi ⇠ N(0, H̃�1

t�1)

Dt =⌫Dt�1 + (1� ⌫)g̃2µ(xt�1)

H̃t =diag

✓
Dt

1� ⌫t

◆
(4.2) ?eq:adam?

with 0  ⌫  1. And g̃2µ(x) means the entry-wise square of g̃µ(x).

Second, we can also use the method of ADAGRAD (Duchi et al., 2011) to construct the approximate

Hessian as

g̃µ(xt�1) =
1

b

bX

i=1

f(xt�1 + µũi)� f(xt�1)

µ
ũi, with ũi ⇠ N(0, H̃�1

t�1)

Dt =Dt�1 + g̃2µ(xt�1)

H̃t =diag

✓
Dt

n

◆
.

Other methods of constructing diagonal Hessian approximation such as ADADELTA (Zeiler, 2012)

used in training deep neural networks can also be use to in our diagonal Hessian approximation.

These kinds of Hessian approximation are heuristic. We can not give an exact convergence rate

of ZO-HessAware with diagonal Hessian approximation by Theorem 1. However, diagonal Hessian

approximations have shown their power in training deep neural networks. Furthermore, diagonal

approximate Hessian has an important advantage that it does not need extra queries to the function

value and need less computational and storage cost.

Though the construction procedure of the diagonal Hessian approximation is the same with

the one of ADAM and ADAGRAD, there some di↵erence between these diagonal Hessians. First, ADAM

and ADAGRAD use H̃1/2 as the approximate Hessian in training neural network. Second, in the

construction of our diagonal Hessian, we use the ‘natural gradient’ defined in Eqn. (1.3) which

contains the Hessian information other than the ordinary gradient. And the information of the

current diagonal Hessian will be used in the estimation of next ‘natural gradient’. In contrast, the

diagonal Hessian will not a↵ect the computation of gradients.
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Attack CNN model on MNIST          

Table 1: Comparison of `1 norm based black-box attacks on CNN model and MNIST with " = 0.2

Algorithm success rate % median queries average queries

targeted

ZOO (Chen et al., 2017) 42.13 15,200 17,091
PGD-NES (Ilyas et al., 2018) 44.19 7,300 10,496
ZOHA-Gauss 50.03 3,712 6,649
ZOHA-Gauss-DC 56.14 2,941 6,246

ZOHA-Diag 52.13 6,400 9,128
ZOHA-Diag-DC 55.56 3,936 7,239

un-targeted

ZOO (Chen et al., 2017) 77.18 13,300 16,390
PGD-NES (Ilyas et al., 2018) 81.55 5,800 8,567
ZOHA-Gauss 85.06 3,612 5,000
ZOHA-Gauss-DC 88.80 2,152 3,629

ZOHA-Diag 90.37 4,500 6,439
ZOHA-Diag-DC 91.90 2,460 4,352

5.3 Evaluation on ImageNet

In this experiment, we use a pre-trained ResNet50 that has 78.15% top-1 accuracy and 92.87%

top-5 accuracy for evaluation. The limit of `1 perturbation is " = 0.05. We will choose 1, 000

images randomly from ImageNet test-set for evaluation and run the attack method until getting

an adversarial example or the number of queries being more than 1, 000, 000. Furthermore, if the

attack is targeted, the target label will be randomly chosen from 1, 000 classes.

In the experiment on ImageNet, instead of Eqn. (3.2), we use the following method to estimate

the gradient

gµ(x) =
1

b

bX

i=1

f(x+ µH̃�1/2ui)� f(x� µH̃�1/2ui)

2µ
H̃1/2ui.

We can see that such gµ have the same expectation with the one defined in Eqn. (3.2). However,

it has a better performance in this experiment. Accordingly, the natural gradient g̃µ(x) is modified

similarly as

g̃µ(x) =
1

b

bX

i=1

f(x+ µũi)� f(x� µũi)

2µ
ũi, with ũi ⇠ N(0, H̃�1).

We report the results in Table 2 and Figure 3, 4. The visualization of adversarial attack is

present in Figure 6 and 7 of Appendix E. We can observe that our algorithms take much less

queries than ZOO and PGD-NES. For the un-target attack, the median queries of ZOHA-Diag-DC is

only about 5% of ZOO and about 38% of PGD-NES with the same success rate. For the target attack,

compared with the un-target attack problem, all these algorithms take much more queries. But

our algorithms still show great query e�ciency. Especially, both ZOHA-Diag and ZOHA-Diag-DC

achieve 100% attack success rate which is higher than PGD-NES but only with about 50% queries of
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Attack Resnet 50 on Imagenet   
Table 2: Comparison of `1 norm based black-box attacks on ResNet50 model and ImageNet with
" = 0.05

Algorithm success rate % median queries average queries

targeted

ZOO (Chen et al., 2017) 100 39,100 45,822
PGD-NES (Ilyas et al., 2018) 99.37 11,270 17,435
ZOHA-Gauss 99.62 8,748 12,257
ZOHA-Gauss-DC 100 8,588 11,770
ZOHA-Diag 100 7,400 9,123
ZOHA-Diag-DC 100 6,273 8,574

un-targeted

ZOO (Chen et al., 2017) 100 12,700 14,199
PGD-NES (Ilyas et al., 2018) 100 1,500 2,283
ZOHA-Gauss 100 1,212 2,259
ZOHA-Gauss-DC 100 1,124 1,959
ZOHA-Diag 100 800 1,149
ZOHA-Diag-DC 100 561 945

PGD-NES. Though ZOO also obtain a 100% success rate, it takes several times of queries as ZOHA-Diag

and ZOHA-Diag-DC.
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Some Attacked Image Examples 
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