Modern Techniques of Statistical Optimization for Machine Learning

Tong Zhang

Our Current Approach to Al

Simple Environment: Big Data+Big Computing+Deep Learning=Al

1,000 object classes (categories).
Images:

1.2 M train
100k test.

Complex Environment & Small Data Learning

• Robustness

"panda" 57.7% confidence

• Varying Environment

Research Theme 1: Big Data & System Machine Learning

Big Data Big Computing Ŧ

• Data augmentation

- Nonconvex optimization
- Distributed optimization
- Model compression
- On device learning

Automated Machine Learning (autoML)

feature engineering, hyperparameter tuning, architecture search ...

Machine Learning Platform

Research Theme 2: Robust and Adaptive Algorithms

Adversarial Examples; Causality; Meta Learning; Continual Learning; Few-shots Learning

Big Data and System ML

Theory of Nonconvex Stochastic Optimization (variance reduction)

- Sharp Analysis for Nonconvex SGD Escaping from Saddle Points (COLT 2019)
- Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator (NIPS 2018)

Distributed Training (gradient compression)

- Gradient Sparsification for Communication-Efficient Distributed Optimization (NIPS 2018)
- Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization (ICML 18)
- DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression (ICML 19)

Robust and Adaptive Algorithms

Adversarial Attack (derivative free optimization)

- Efficient Decision-based Black-box Adversarial Attacks on Face Recognition (CVPR 2019)
- NATTACK: Improved Black-Box Adversarial Attack with Normal Distributions (ICML 2019)
- Hessian-Aware Zeroth-Order Optimization for Black-Box Adversarial Attack (arxiv)

Challenges: nonconvexity

Technique: variance reduction

Papers:

Sharp Analysis for Nonconvex SGD Escaping from Saddle Points (COLT 2019)

Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator (NIPS 18)

Training machine learning models

$$\min_{x} f(x) \qquad f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

SGD algorithm: for t=1, 2, ... randomly pick i from 1 to n: $\nabla f(m) = \sum_{n=1}^{\infty} \int \nabla f(m) dx$

$$x_t \leftarrow x_{t-1} - \eta_t \nabla f_i(x_{t-1})$$

In practice it works well for nonconvex functions such as neural networks

Question: How many SGD steps are needed to find an approximate stationary point

$$\|\nabla f(x)\|_2 \le \epsilon$$

Partial answer: not difficult to show (using standard proof techniques)

$$O(\epsilon^{-4})$$
 number of steps

Q 1 Does SGD escape saddle and converge to an approximate local minimum?

Q2

How fast does it converge to local minimum?

Q3 Is there a **better method**?

Saddle Points and Approximate Local Minimum

Given $\epsilon > 0$, an ϵ -approximate local minimum is a point x such that

$$\|\nabla f(x)\|_2 \le \epsilon$$

$$\nabla^2 f(x) \ge -\sqrt{\epsilon}I$$

Claim: SGD can escape saddle points and converge to an approximate local minimum

Number of iterations for SGD: (Ge et al., 2015)

(Daneshmand et al., 2018)

 $poly(d)\epsilon^{-8}$ $d\epsilon^{-10}$ ϵ^{-4}

-3.5

(Jin et al, arxiv 2019)

(Our result COLT 2019)

Our new result shows SGD can converge to approximate local minimum in $\epsilon^{-3.5}$ steps.

Question: Can we do better?

Earlier attempts to improve the convergence of SGD: most are not better

	NEON+SGD	(Xu et al., 2018)		
SGD Variants	NEON2+SGD	(Allen-Zhu & Li, 2018)	e	
	Stochastic Cubic	(Tripuraneni et al., 2018)		
	RSGD5	(Allen-Zhu, 2018a)	E	
	Natasha 2^{Δ}	(Allen-Zhu, 2018b)		
	$NEON2+SNVRG^{\Theta}$	(Zhou et al., 2018a $)$	e	
	$SPIDER-SFO^+$	(Fang et al., 2018)	ϵ^{-3}	

It can be shown best possible convergence result is: ϵ^{-3}

Can be achieved by SPIDER algorithm, using variance reduction technique

Proved in our NIPS 2018 paper [Fang, Li, Lin, Zhang] Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator

Stochastic Path Integrated Differential Estimator

Given stochastic path
$$x_1, x_2, \ldots, x_t, \ldots$$
 estimate gradient $\nabla f(x_t)$
SG (Stochastic Gradient):

$$g_t =
abla f_i(x_t)$$
 Unbiased estimator of $abla f(x_t)$

Under Suitable Conditions, SPIDER is a better estimator than SG with smaller variance

Variance of SGD:
$$\mathbf{E}_{i} \|f_{i}(x_{t}) - \nabla f(x_{t})\|^{2} = O(1)$$
Variance of SPIDER: $O(\eta)$ with $t = O(1/\eta)$
Assume constant learning rate
$$\|x_{s} - x_{s-1}\| = O(\eta)$$

$$\|\Delta g_{s}\| = \|\nabla f_{i}(x_{s}) - \nabla f_{i}(x_{s-1})\| = O(\eta)$$

$$\|\nabla f(x_{s}) - \nabla f(x_{s-1})\| = O(\eta)$$

$$= \sum_{s=1}^{t} \mathbf{E} \|\underbrace{(\Delta g_{s} - (\nabla f(x_{s}) - \nabla f(x_{s-1})))}_{O(\eta)}\|^{2}$$

$$= \mathbf{E} \sum_{s=1}^{t} O(\eta^{2}) = O(\eta).$$

The SPIDER Algorithm

Algorithm 2 SPIDER-SFO: Input x^0 , $S_1 = 2\sigma^2/\epsilon^2$, $q = 2\sigma^2/\epsilon^2$ (online case, in high probability)

- 1: for k = 0 to K 1 do
- 2: if mod(k,q) = 0 then
- 3: Draw S_1 samples and let $v^k = \nabla f_{S_1}(x^k)$
- 4: else
- 5: Draw $i \sim [n]$ uniformly at random, and let $v^k = \nabla f_i(x^k) \nabla f_i(x^{k-1}) + v^{k-1}$
- 6: end if
- 7: **if** $||v^k|| \le 2\epsilon$ then
- 8: return x^k
- 9: else

10:
$$x^{k+1} = x^k - \eta \cdot (v^k / \|v^k\|)$$
 where $\eta = \epsilon^2 / (2L\sigma)$.

- 11: end if
- 12: end for
- 13: return x^K

 \diamond however, this line is *not* reached with high probability

Upper Bound

SPIDER can obtain an ϵ approximate local minimum in

$$O(\epsilon^{-3})$$
 steps

Lower Bound

There exists a problem such that no algorithm can obtain an ϵ approximate local minimum in fewer than

$$\Omega(\epsilon^{-3})$$
 steps

Answered a fundamental question on the complexity of nonconvex optimization

- 1. The complexity of SGD
- 2. The optimal complexity

Practical for some problems, but not for neural networks due to special structures

What's next?

Work in progress: improved practical training algorithm for neural network training

Challenges: Network Communication Bandwidth

New Technique: gradient compression + error compensation

Papers:

Gradient Sparsification for Communication-Efficient Distributed Optimization (NIPS18)

DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated Compression (ICML 19)

Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization (ICML 18)

Problem: training machine learning models

$$\min_{x} \quad \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

Data are distributed over multiple nodes

Question: How to reduce the communication cost?

Answer:

Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization (ICML 2018) DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-pass Error-Compensated

Compression (ICML 19)

Other Communication Architectures

Simple One-Step Communication

Complex Multi-Step Communication

Optimization Method: SGD

time step t model parameter
$$x^{(t)}$$

Compute minibatch gradient using local data on each node

$$g_i^{(t)}(x^{(t)}) = \frac{1}{b} \sum_{j=1}^{b} \nabla f_j(x^{(t)})$$

Communicate across network and compute aggregated gradient

$$g^{(t)} = \frac{1}{m} \sum_{i=1}^{m} g_i^{(t)}(x^{(t)})$$

Communicate and update model parameter:

$$x^{(t+1)} = x^{(t)} - \eta g^{(t)}$$

Advantage: quantization reduces communication cost

Disadvantage: quantization error causes convergence slow down

How to Improve

Ideal iterate:
$$x^{(t)} = x^{(0)} - \eta [g^{(0)} + g^{(1)} + \dots + g^{(t-1)}]$$
 Latest gradient:
$$g^{(t)}$$

Transmitted gradient:

$$\tilde{g}^{(t)}$$

 $q^{(t)} - \tilde{q}^{(t)}$ One step error due to compression: untransmitted gradient

Cummulative error: cumulative untransmitted gradient

$$h^{(t+1)} = h^{(t)} + (g^{(t)} - \tilde{g}^{(t)})$$

untransmitted gradient

Key Idea: error compensation

- Use cumulative untramsmitted gradients to compensate the current gradient •
- Effect is similar to delayed gradients in asynchronous distributed optimization •

Our Approach: Error Compensated Quantized SGD

Claim 1: QSGD has slower convergence rate than that of SGD

Claim 2:

Asymptotically EC-QSGD has the same convergence rate as that of SGD up to the leading order, under appropriate conditions, and in particular:

$$\|$$
Quantize $(u) - u \| \le \gamma \| u \|$ with $\gamma < 1$.

Conclusion:

EC-QSGD behaves significantly better than QSGD

New Technique for Distributed Optimization under Limited Network Bandwidth

What's Next?

Other System-Aware Machine Learning Training and Deployment

- Decentralized On-Device Training
- Cloud-Device Cooperative Training
- Privacy-Aware Cooperative Training
- Low-bit Training
- Automated System Performance Optimization
- Automated Machine Learning
- On-Device Model Compression

Challenges: Limited Number of Queries

New Technique: 2nd order derivative free optimization

Papers:

Efficient Decision-based Black-box Adversarial Attacks on Face Recognition (CVPR 19)

NATTACK: Improved Black-Box Adversarial Attack with Normal Distributions (ICML 19)

Hessian-Aware Zeroth-Order Optimization for Black-Box Adversarial Attack (arxiv)

Problem: Deep models are not robust under adversarial attack

• How to construct efficient black-box Adversarial Attack procedure

Add Adversarial

Noise

Ostrich

Tractor

- Mathematical Question:
 - Given model
 - Given example ${{X}}$
 - Find a small perturbation $\ \delta: \|\delta\| \leq \epsilon$

 $g(\theta, x)$ and $g(\theta, x + \delta)$ have different labels

- White Box
 - Need to know the model parameter heta
 - Technique: first order gradients of the model
- Black Box
 - No need to know the model parameter θ : can evaluate function

 $g(\theta, x)$

• Technique: zeroth order approximation of first order gradients

$$g(x) = g(\theta, x)$$

Given x_0 with label y_0 , want to find $x \approx x_0$ so that

 $\min_{\|x-x_0\| \le \epsilon} f(x)$

where

$$f(x) = L(g(x), y_0)$$

is a loss function measuring how different is the model output g(x) and label y_0

Derivative free: We can evaluate f(x) but not $\nabla f(x)$

Approximate derivative using function value

$$\nabla f(x) = \mathbf{E}_{u \sim N(0,I)} \ \mu^{-1} (f(x + \mu u) - f(x))u + O(\mu)$$

The following derivative free algorithm works as approximate SGD

Iterate t=0, 1, ...,
Draw
$$u \sim N(0, I)$$

 $x_{t+1} = x_t - (f(x_t + \mu u) - f(x_t))u$

Algorithm 1 Algorithm ZO-HessAware

- 1: Input: $x^{(0)}$ is an initial point sufficient close to x^* . And b is the batch size and p is an integer. Parameter η is the step size.
- 2: for t = 0, ..., T do
- 3: **if** $t \mod p == 0$ **then**
- 4: Compute an approximate Hessian \tilde{H}_t satisfies Eqn. (3.1).
- 5: **end if**
- 6: Generate b samples with $u_i \sim N(0, I_d)$ and construct $\tilde{g}_{\mu}(x_t) = \frac{1}{b} \sum_{i=1}^{b} \frac{f(x + \tilde{H}_t^{-1/2} u_i) f(x)}{\mu} \tilde{H}_t^{-1/2} u_i;$
- 7: Update $x_{t+1} = x_t \eta \tilde{g}_{\mu}(x_t)$. 8: end for

At the current time this leads to the most effective attack method

Assumption: Hessian approximation satisfies: (quality measured by ho)

$$\rho \tilde{H} \le \nabla^2 f(x) \le (2-\rho)\tilde{H}, \qquad \xi I \le \tilde{H}$$

Convergence Result: If $\xi > 0$ then we have local linear convergence:

$$\mathbf{E}[f(x_{t+1}) - f(x_*)] \le \left(1 - \frac{b\rho}{16(d+2)}\right) (f(x_t) - f(x_*)) + O(\mu^2)$$

d : problem dimension

Convergence: depends on $rac{
ho}{d}$ independent of the condition number of $abla^2 f(x)$

Derivative Free Hessian Approximation Methods

• Method 1: ZOHA-Gauss

$$\tilde{H} = b^{-1} \sum_{i=1}^{b} \frac{f(x + \mu u_i) + f(x - \mu u_i) - 2f(x)}{2\mu^2} u_i u_i^{\top} + \lambda I_d, \text{ with } u_i \sim N(0, I_d)$$

• Method 2: ZOHA-Diag

$$\tilde{g}_{\mu}(x_{t-1}) = \frac{1}{b} \sum_{i=1}^{b} \frac{f(x_{t-1} + \mu \tilde{u}_i) - f(x_{t-1})}{\mu} \tilde{u}_i, \text{ with } \tilde{u}_i \sim N(0, \tilde{H}_{t-1}^{-1})$$
$$D_t = \nu D_{t-1} + (1 - \nu) \tilde{g}_{\mu}^2(x_{t-1})$$
$$\tilde{H}_t = \text{diag}\left(\frac{D_t}{1 - \nu^t}\right)$$

	Algorithm	success rate $\%$	median queries	average queries
targeted	Z00 (Chen et al., 2017)	42.13	$15,\!200$	17,091
	PGD-NES (Ilyas et al., 2018)	44.19	$7,\!300$	$10,\!496$
	ZOHA-Gauss	50.03	3,712	$6,\!649$
	ZOHA-Gauss-DC	56.14	$2,\!941$	$6,\!246$
	ZOHA-Diag	52.13	$6,\!400$	$9,\!128$
	ZOHA-Diag-DC	55.56	$3,\!936$	$7,\!239$
un-targeted	Z00 (Chen et al., 2017)	77.18	13,300	16,390
	PGD-NES (Ilyas et al., 2018)	81.55	$5,\!800$	$8,\!567$
	ZOHA-Gauss	85.06	$3,\!612$	$5,\!000$
	ZOHA-Gauss-DC	88.80	$2,\!152$	$3,\!629$
	ZOHA-Diag	90.37	$4,\!500$	$6,\!439$
	ZOHA-Diag-DC	91.90	$2,\!460$	$4,\!352$

 $\|\delta\|_{\infty} \le 0.2$

	Algorithm	success rate $\%$	median queries	average queries
targeted	Z00 (Chen et al., 2017)	100	$39,\!100$	45,822
	PGD-NES (Ilyas et al., 2018)	99.37	$11,\!270$	$17,\!435$
	ZOHA-Gauss	99.62	8,748	$12,\!257$
	ZOHA-Gauss-DC	100	$8,\!588$	11,770
	ZOHA-Diag	100	$7,\!400$	$9,\!123$
	ZOHA-Diag-DC	100	$6,\!273$	$8,\!574$
un-targeted	Z00 (Chen et al., 2017)	100	12,700	14,199
	PGD-NES (Ilyas et al., 2018)	100	1,500	$2,\!283$
	ZOHA-Gauss	100	$1,\!212$	$2,\!259$
	ZOHA-Gauss-DC	100	$1,\!124$	$1,\!959$
	ZOHA-Diag	100	800	$1,\!149$
	ZOHA-Diag-DC	100	$\boldsymbol{561}$	$\boldsymbol{945}$

$\|\delta\|_{\infty} \le 0.05$

Some Attacked Image Examples

Summary

Statistics and Optimization are central to modern machine learning

- Many new problems require new techniques
- Exciting area with rapid research progress

What's next?

- Big Data and System ML Improved algorithm for neural network training Cloud-device collaboration: federated learning Automated machine learning
- Robust and Adaptive Algorithms
 Attack → Defense → Understand/Prevent
 Causal learning
 Meta learning and small sample learning
- Generation Models
- Reinforcement Learning

